
First International Symposium on "Reducing the Cost of Spacecraft Ground Systems and Operations",
Rutherford Appleton Laboratory, England, 1995. Page 1

DESIGNING BUDGET-TOLERANT SYSTEMS

David W. R. Denzler
 Computer Sciences Corporation
 7700 Hubble Drive
 Lanham-Seabrook, MD 20706

Joe Kasser
 The Anticipatory Testing Corporation
 P.O. Box 3419
 Silver Spring, MD 20918

ABSTRACT
In today's systems engineering environment, budgets are
decreasing while needs are remaining constant or even
increasing. This paper discusses the concept of designing
systems so that in the event of budget reductions, there is
no need to cancel the project and restart the development
of a system with lower capability. Instead, the least-
important requirements are easily eliminated.

INTRODUCTION
Budget changes lead to changes in performance and vice
versa. These factors are two sides of the same coin, yet
this very simple linkage does not seem to have been made
to date. As a matter of fact, the traditional development
philosophy tends to keep the cost information isolated
from the people who set requirements. One purpose of
systems engineering is risk mitigation, yet mitigating the
risks introduced by a budget decrease tends to be ignored
in the system development life cycle (SDLC).

In today's environment of business process reengineering,
enterprise engineering, and reinventing government, we
really need to modify our methodology to be able to
optimally mitigate the effect of a budget decrease. Before
considering this modification, consider the effect of a
budget decrease with no accompanying methodology to
minimize its effect.

EFFECT OF A BUDGET DECREASE
The effect of a budget decrease is change. Some function-
ality will have to be given up, i.e., requirements will have

to be deleted. The change may take one of two forms: (1)
cut a certain amount of money from the program, which
directly affects the system engineering process within the
organization with ramifications on the staffing and
schedule or (2) cut some requirements from the system
under development, which has a direct impact on the
product and an indirect impact on staffing and schedule.

The impact of a change affects requirements, documents,
work breakdown structure, builds and deliveries, and cost
and schedule, depending on the point in the SDLC in
which the change occurred.

• Changes in high-level requirements will affect lower

level requirements and may affect implementation
requirements.

• Documents affected could include management plans,
operations concepts, manuals, test plans, and proce-
dures.

• Work breakdown structure elements include all
SDLC activities.

• For builds and deliveries, the implementation se-
quence may be changed to the point where a build
does not add any value to the system, so the cost of
testing, releasing, and delivering the build may no
longer be economical.

• The effects of the changes will show up as a variance
in the cost and schedule.

First International Symposium on "Reducing the Cost of Spacecraft Ground Systems and Operations",
Rutherford Appleton Laboratory, England, 1995. Page 2

THE PRIME DIRECTIVE
The prime directive is to always make a decision about
any change to the system with the full knowledge of its
impact on the system. This directive may be thought of as
a top-level requirement for project management. The
program manager must be concerned with the effect of the
change in the three dimensions of systems engineering
[Kasser, 1995a]:

• The Product. There will be an impact on the perfor-

mance.
• The Process. There will be an impact on the

schedule.
• The Organization. There will be an impact on the

staffing.

Decisions often have to be made in a short time. If
incomplete information is available, the program manager
quickly evaluates it and makes a less-than-optimal deci-
sion, which results in subsequent waste further into the
project. This waste results from the lack of information or
from not producing a document that contains that informa-
tion [Kasser, 1995b].

Consider what it takes to make an optimal decision. When
a budget cut occurs, everyone agrees that effective change
management will minimize the impact of the change and
the loss of functionality. This effective change manage-
ment can only be achieved if, when the systems engineers
develop a complete set of requirements for the proposed
system, they also develop the following additional infor-
mation for each requirement:

• Priority of the requirement.
• Dependencies with other requirements.
• Cost to implement the requirement.

Consider the changes to the current methodology to obtain
and make use of this additional information.

THE CURRENT METHODOLOGY
During the initial phase of the project, often called the
concept definition phase, the system concept document is
developed. This contains statements explaining why the
system is necessary and what it must do. The document
provides a set of goals and objectives for the system,
including a brief rationale of why it should be achievable.
This first system-level needs document may also be called

a systems and operations concept document or a concept
feasibility report.

The project manager also develops a system engineering
management plan that describes

• The resources available to solve the need.
• How the resources will be allocated.
• The system engineering processes to be used (imple-

mentation plan).
• The constraints on the SDLC (e.g., schedule, budget).

Once these activities are complete, a system requirements
specification is developed during the requirements
definition phase that contains the requirements (i.e., actual
requirements for the system to be built) and evaluation
criteria (i.e., criteria to be used to select the optimal
system from the alternatives to be developed from the
requirements).

The system requirements specification is then reviewed
with all stakeholders in the proposed system at a formal
system requirements review. In progressive projects, these
involved stakeholders include

• The customer.
• System product users (not always the customer).
• Requirements developers, usually systems engineers.
• System operators.
• System developers (software and hardware engi-

neers).

The system requirements review formalizes the agreement
that the requirements are correct. When the system
requirements review is complete, the candidate architec-
tures are developed. Each alternative system is then
evaluated against the evaluation criteria and the optimal
system is chosen. The optimal system=s preliminary
design is presented in a formal preliminary design review
to an audience of stakeholders.

Once designed, the system is ready to be built. Imple-
mentation and delivery of systems often are performed in
partial deliveries commonly called builds. Each succes-
sive build provides additional capabilities. Planning builds
requires allocating system level requirements to builds
and documenting the allocation in a build plan. MIL-STD-
2167A provides guidance on build planning for software

First International Symposium on "Reducing the Cost of Spacecraft Ground Systems and Operations",
Rutherford Appleton Laboratory, England, 1995. Page 3

systems and may be used as a guideline for systems as a
whole.

BUDGET-TOLERANT SYSTEM
DEVELOPMENT METHODOLOGY

The budget-tolerant system development methodology is
based on the traditional waterfall SDLC model, but with
significant enhancements. These enhancements require
consideration of costs and the importance of requirements
as necessary elements in the analysis and design
processes.

The methodology consists of seven steps:

1. Determine the feasibility of a requirement
2. Develop a complete set of requirements
3. Prioritize the requirements
4. Cost each requirement
5. Establish a baseline
6. Use the cataract approach to build planning
7. Use effective change management techniques

The following paragraphs describe these steps.

Determine the Feasibility of a Requirement. In the
traditional SDLC approach, the tacit assumption is made
that we know what we want and what is possible when we
write the system concept. However, a comparison of any
project's system concept with the final system would
probably reflect that we seldom have the promethium
powers of predicting the future to accurately state exactly
what really is needed, and possible.

The Applied Physics Laboratory of the Johns Hopkins
University has for many years successfully used a tech-
nique for new system feasibility and needs analysis
[Denzler, 1973]. This technique involves building proof-
of-principle systems that give a 'fuzzy' representation of a
system that the U.S. Navy thinks it might need. The first
test of this fuzzy requirement is whether the technology
really exists to actually build the critical components of
the system. If it does not exist, then spending a lot of
money chasing a full military-standard SDLC technologi-
cal Awindmill@ is avoided. Note that the proof-of-
principle system usually provides only a partial functional
representation. These proof-of-principle systems are then
fielded on real Navy ships (with duct tape and bailing
wire) with real sailors operating them.

After the field tests, the users of the system are exten-
sively interviewed. What worked and what was useful
becomes a requirement, what did not work indicates a new
requirement must be written, and what was not used
should be thrown out. The important point about this
approach is that failures are as important as successes in
learning what is really required within the realm of the
possible. An important corollary to this point is that the
degree of innovation is directly related to the degree of
freedom to fail; at this time, the penalty for failure is
minimized because it is detected during this phase. Field
tests of proof-of-principal systems are an excellent
mechanism for detecting failed and undesirable require-
ments before spending the money to implement them.

Develop a Complete Set of Requirements. In the
landmark study of the impact of missing and incorrect
requirements [Brooks, 1972] points out that the earlier in
the development cycle that an error is made that is not
detected until the system is built, the more costly it is to
correct by orders of magnitude. Therefore, an important
technique to avoid spending money building defects is to
try to validate that the requirements in the system require-
ments specification are complete and consistent with each
other. Because requirements are typically written as
abstracted 'shall' statements grouped functionally, it is
difficult to detect if any are missing or that their imple-
mentations will interact correctly.

A technique often used in space mission development
[Denzler and Mackey, 1994] is to generate operations
scenarios from the system requirements specification and
try to determine if the desired operations will result. An
operations concept document is often required as a
companion document to the system requirements specifi-
cation at the system requirements review. Presentations
use the operations scenarios to illustrate the high-level
validity of the system requirements specification. This
graphical technique for developing and displaying opera-
tions scenarios [Denzler and Mackey, 1994] has been in
use for more than 10 years. [Denzler and Vallone, 1995]
shows their use throughout the SDLC.

Although operations scenarios may be used to detect
missing requirements during the generation of the system
requirements specification, prototyping may be used
during this time to refine those requirements associated
with the system's interaction with operators and product
users.

First International Symposium on "Reducing the Cost of Spacecraft Ground Systems and Operations",
Rutherford Appleton Laboratory, England, 1995. Page 4

This concept of prototyping accepts the fact that in the
real world, what the customer really wants probably is not
in the system requirements specification. In this activity,
the prototype reproduces, in an interactive simulation, the
look and feel of the product that the customer or operator
will receive. This gives the customer a chance to indicate
where the mistakes are in both requirements and imple-
mentation before the system is actually built. In this sense,
the prototype becomes a virtual system, as described in
[Andrews and Goeddel, 1994].

Prioritize the Requirements. Prioritize the requirements
as early as possible in the SDLC, and confirm the priori-
ties at the system requirements review. For example, if the
needs are for a ship, then offensive and defensive capabil-
ities must be prioritized. There is no need to rank every
requirement against every other; grouping them in several
categories is enough.

Quality function deployment is an excellent technique for
prioritizing requirements. It originated in 1972 at
Mitsubishi's Kobe shipyard [Hauser and Clausing, 1988].
Using this approach, Toyota Autobody reduced
preproduction costs by more than 60 percent between
1977 and 1984 [Hauser and Clausing, 1988]. Quality
function deployment:

• Is an effective technique for capturing, communi-

cating, and understanding the customer=s require-
ments.

• Is a structured methodology to increase the proba-
bility that products will be designed to reflect cus-
tomer's desires and tastes.

• Facilitates teamwork and a concurrent engineering
approach, namely allowing marketing people, design
engineers, and manufacturing staff to work closely
together from the time the product is first conceived.

• May be used to force the customer to think about the
real need for each requirement by allowing attributes
to be assigned to each requirement, including:

• A priority weighting
• An estimate of the degree of technical difficulty

of implementation (risk factor)
• An estimate of the cost of meeting the

requirement

As these attributes are identified, the customer can make
an informed decision as to the real need for a particular

requirement in light of budgetary or schedule constraints.
Systems engineers take the lead using quality function
deployment to translate customer requirements into
technical requirements for each stage of product develop-
ment [LaSala, 1994].

Cost Each Requirement. When the system requirements
review is finished, several alternative architectures or
candidate systems are identified. Each candidate system
must be designed in sufficient detail to ensure that it is
feasible within the constraints of available resources and
capable of being realistically evaluated against the
evaluation criteria.

An alternative architecture analysis is then performed.
This process analyzes each candidate system to see how
well it meets the system requirements and provides a
rough order-of-magnitude estimate of the resources
needed to build the candidate system; i.e., cost and
schedule.

Establish a Baseline. The design is then baselined and
presented at a preliminary design review. This particular
review differs from the traditional preliminary design
review in that life-cycle cost estimates and requirements
priorities are included in the design trade studies. A
detailed design-to-cost development is then initiated,
where the highest priority requirements are selected until
the sum of their costs to implement is within the appropri-
ate margin of the total allowed cost. In this design exer-
cise, the

• Cost of all selected requirements is computed for the

entire life cycle of the system
• Most necessary requirements are those selected for

implementation
• Builds are organized so that the most critical require-

ments are implemented first

Use the Cataract Approach to Build Planning. The
major consequences of failing to control changes are
moving baselines and confusion leading to cost escalation
and schedule delays [Kasser, 1994]. Various approaches
have been used to make up for the deficiencies of the
waterfall approach in an environment of changes. These
approaches include Rapid Evolutionary Development
[Arthur, 1992] and Structured Rapid Prototyping [Connell
and Shafer, 1989]. Both of these approaches use the
system being delivered as the tool for communications

First International Symposium on "Reducing the Cost of Spacecraft Ground Systems and Operations",
Rutherford Appleton Laboratory, England, 1995. Page 5

between the customers and the developers and start with a
deliverable prototype and build onto it.

The cataract approach [Kasser, 1995a] is an alternative
approach. It involves planning the system implementation
in a series of builds wherein each build contains a full
waterfall or mini SDLC. This approach allows changes to
occur, but in a controlled manner. The goal of the cataract
approach is to optimize the factors involved to ensure as
smooth an implementation path as possible.

The cataract approach to build planning may be likened to
a rapid prototyping scenario in which the requirements for
each build are frozen at the start of the build. This ap-
proach, however, is more than just grouping requirements
in some logical sequence and charging ahead. Build plans
must be optimized on the product, process, and organiza-
tion axis.

• Implement the highest priority requirements in the

earlier builds. Then, if budget cuts occur during the
implementation phase, the lower priority portions are
the ones that can readily be eliminated because they
were to be implemented last.

• Make use of the fact that, typically, 20 percent of the
application will deliver 80 percent of the capability
[Arthur, 1992] by providing that 20 percent in the
early builds.

• Allow the waterfall approach to be used for each
build. This tried-and-true approach works on a small
project over a short timeframe.

• Produce a build with some degree of functionality
that also can be used by the customer in a productive
manner. For example, the first build should, at a
minimum, provide the user interface and shell to the
remainder of the functions. This follows the rule of
designing the system in a structured manner and
performing a piecemeal implementation.

• Allow a factor for the element of change.
• Optimize the amount of functionality in a build (fea-

tures versus development time).
• Minimize the cost of producing the build. Balance the

number of personnel available to implement the build
(development, test, and systems engineers) over the
SDLC to minimize staffing problems during the
SDLC.

Use Effective Change Management Techniques. Once
we start building the system, change becomes more

complex because the impact of a change can obviate
portions already built, as well as cause redesign of yet-to-
be-implemented requirements. When a change request is
made, the systems engineer performs a impact assessment
what-if scenario. The priorities of the requirements and
the major cost drivers are known, so change management
is simply as follows:

• Budgetary changes: Identify lowest level require-

ments. Assess impact of deleting them. Sometimes
work already completed may change absolute costs.
Delete the lowest priority requirement(s) consistent
with the budget reduction.

• Requirements changes: Assess cost and schedule
impact of change. Assess priority of additional
requirements.

An effective way to optimize the project implementation
path is to use computer-enhanced systems engineering
tools [Kasser, 1995a]. From the perspective of minimizing
the effect of change, these tools provide the following
capabilities:

• Automate requirements extraction from statements of

work or other source documents.
• Detect changes made in the contents of two versions

of the same source document.
• Record a complete history of all changes.
• Trace requirements.
• Make use of a common language for specialists from

multiple disciplines to communicate while working
together on a systems development project.

• Develop conceptual designs as block diagrams.
• Display the conceptual design from multiple perspec-

tives; i.e., hierarchical, functional, documentation,
and technical budget.

SUMMARY
In this brave new world of design-to-cost systems with
ever-shrinking budgets, paradigms exist that allow us to
develop new systems "better, faster, and cheaper." Just as
our systems have had to become more integrated, our
systems definition, requirements prioritization, and cost
paradigms also must become more integrated. However,
budget-tolerant systems are possible if we accept that we
must reengineer our system development process.

First International Symposium on "Reducing the Cost of Spacecraft Ground Systems and Operations",
Rutherford Appleton Laboratory, England, 1995. Page 6

REFERENCES
Andrews, Blake A. and Goeddel, William C. Jr., AUsing

Rapid Prototypes for Early Requirements Valida-
tion.@ 4th Annual International Sym-posium of the
National Council of Systems Engineering (NCOSE),
San Jose, CA, 1994.

Arthur, Lowell Jay, Rapid Evolutionary Development.
John Wiley & Sons, Inc., 1992.

Brooks, Fred, The Mythical Man-Month. Addison-Wesley
Publishing Company, 1972.

Connell, John L. and Shafer, Linda, Structured Rapid
Prototyping, Prentice-Hall, Inc., 1989.

Denzler, David W. R. and Mackey, William, AAn Opera-
tions Concept Development Methodology Using a
Graphic Process Flow Technique.@ 4th Annual
International Symposium of the National Council of
Systems Engineering (NCOSE), San Jose, CA, 1994.

Denzler, David W. R. and Vallone, Dr. Antonio, AOpera-
tions: The Missing Third of Systems Engineering.@
5th Annual International Symposium of the National
Council of Systems Engineering (NCOSE), St. Louis,
MO, 1995.

Denzler, David W. R., Evaluation of the TRANSIM Low-
Cost Satellite Navigation System, The Johns Hopkins
University Applied Physics Laboratory, APL/JHU CP
027, May 1973.

Hauser, John R. and Clausing, Don, AThe House of Qual-
ity.@ Harvard Business Review, MayBJune 1988,
63-65.

Kasser, Joe, AGaining the Competitive Edge Through
Effective Systems Engineering.@ 4th Annual
International Symposium of the National Council of
Systems Engineering (NCOSE), San Jose, CA, 1994.

Kasser, Joe, Applying Total Quality Management to
Systems Engineering, Artech House, 1995.

Kasser, Joe, AImproving the Systems Engineering Docu-
mentation Production Process.@ 5th Annual Inter-
national Symposium of The National Council of
Systems Engineering (NCOSE), St. Louis, MO, 1995.

LaSala, Kenneth P., AIdentifying Profiling System Re-
quirements with Quality Function Deployment.@ 4th
Annual International Symposium of The National
Council of Systems Engineering (NCOSE), San Jose,
CA, 1994.

BIOGRAPHIES
David W. R. Denzler is a Senior Consulting Engineer
with CSC. He has a B.S. degree from New Mexico State
University and has worked professionally as a systems

engineer for 30 years. The majority of his career has been
devoted to developing ground systems to support space-
craft operations and data processing for the Department of
Defense, NASA, the European Space Agency, and the
Maritime Administration. He has published several
reports on satellite navigation in the National Technical
Information Service and delivered papers to the Radio
Technical Commission for Marine Sciences, Air Traffic
Control Association, and NCOSE. He is a member of the
Institute of Electrical and Electronics Engineers and the
Institute of Navigation. He teaches system requirements
generation in CSC's courses on systems engineering.

Joe Kasser is president of the Anticipatory Testing
Corporation, an organization he founded to reduce cost
and schedule overruns in systems engineering. He has
spent the last 20 years applying total quality management
to systems engineering, resulting in the achievement of
cost-effective implementation of international and domes-
tic aerospace, communications, and solar power systems.
He is a recipient of NASA=s Manned Space Flight
Awareness (Silver Snoopy) Award for quality and
technical excellence. He is also an Institute of Certified
Professional Manager's (ICPM's) Certified Manager and a
recipient of the ICPM=s 1993 Distinguished Service
Award. Parts of this paper were developed for his pro-
posed doctoral dissertation at The George Washington
University, as well as from his book, Applying Total
Quality Management to Systems Engineering. Material
from the book is reproduced with permission from Artech
House.

	Silver Spring, MD 20918
	ABSTRACT
	INTRODUCTION
	EFFECT OF A BUDGET DECREASE
	THE PRIME DIRECTIVE
	THE CURRENT METHODOLOGY
	BUDGET-TOLERANT SYSTEM DEVELOPMENT METHODOLOGY
	SUMMARY
	REFERENCES
	BIOGRAPHIES

